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Interferometric imaging of amplitude and 
phase of spatial biphoton states

Danilo Zia    1, Nazanin Dehghan2,4, Alessio D’Errico    2,4 , Fabio Sciarrino    1 & 
Ebrahim Karimi    2,3

High-dimensional biphoton states are promising resources for quantum 
applications, ranging from high-dimensional quantum communications 
to quantum imaging. A pivotal task is fully characterizing these states, 
which is generally time-consuming and not scalable when projective 
measurement approaches are adopted; however, new advances in 
coincidence imaging technologies allow for overcoming these limitations 
by parallelizing multiple measurements. Here we introduce biphoton 
digital holography, in analogy to off-axis digital holography, where 
coincidence imaging of the superposition of an unknown state with a 
reference state is used to perform quantum state tomography. We apply 
this approach to single photons emitted by spontaneous parametric 
down-conversion in a nonlinear crystal when the pump photons possess 
various quantum states. The proposed reconstruction technique allows 
for a more efficient (three orders of magnitude faster) and reliable (an 
average fidelity of 87%) characterization of states in arbitrary spatial 
modes bases, compared with previously performed experiments. 
Multiphoton digital holography may pave the route toward efficient and 
accurate computational ghost imaging and high-dimensional quantum 
information processing.

Photonic qudits are emerging as an essential resource for environment- 
resilient quantum key distribution, quantum simulation and quantum 
imaging and metrology1. The availability of unbounded photonic 
degrees of freedom, such as time-bins, temporal modes, orbital 
angular momentum (OAM) and radial number1, allows for encod-
ing large amounts of information in fewer photons than would be 
required by qubit-based protocols (for example, when using only 
polarization). At the same time, the large dimensionality of these 
states, such as those emerging from the generation of photon pairs, 
poses an intriguing challenge for what concerns their measurement. 
The number of projective measurements necessary for a full-state 
tomography scales quadratically with the dimensionality of the Hil-
bert space under consideration2. This issue can be tackled with adap-
tive tomographic approaches3–5 or compressive techniques6,7, which 

are, however, constrained by a priori hypotheses on the quantum state 
under study. Moreover, quantum state tomography via projective 
measurement becomes challenging when the dimension of the quan-
tum state is not a power of a prime number8. Here we try to tackle the 
tomographic challenge, in the specific contest of spatially correlated 
biphoton states, looking for an interferometric approach inspired by 
digital holography9–11, familiar in classical optics. We show that the 
coincidence imaging of the superposition of two biphoton states, 
one unknown and one used as a reference state, allows retrieving the 
spatial distribution of phase and amplitude of the unknown biphoton 
wavefunction. Coincidence imaging can be achieved with modern 
electron-multiplying charged coupled device cameras12,13, single pho-
ton avalanche diode arrays14–16 or time-stamping cameras17,18. These 
technologies are commonly exploited in quantum imaging, such as 
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reconstructed states, such as OAM conservation, the generation of 
high-dimensional Bell states, parity conservation and radial correla-
tions. Remarkably, we show how, from a simple measurement, one 
can retrieve information about two-photon states in arbitrary spatial 
mode bases without the efficiency and alignment issues that affect 
previously implemented projective characterization techniques. 
Depending on the source brightness and the required number of 
detection events, the measurement time can be of the order of tens of 
seconds, whereas the previously implemented projective techniques 
required several hours and were limited to the exploration of a small 
subspace of spatial modes. As a latter example, we give a proof of 
principle demonstration of the use of this technique for quantum 
imaging applications.

Theoretical background
We start by considering a general scenario in which the superposition 
between two biphoton states is created. We label each state as |ψr⟩  
and |ψu⟩, where the subscripts r and u stand for reference and unknown, 
respectively. The state |ψr⟩  is considered as known (for example,  
it can emerge from a source that was previously characterized), whereas 
the goal is finding |ψu⟩ from measurements performed on the super-
position state |ΨTOT⟩ = |ψr⟩ + |ψu⟩. To simplify the analysis, we consider 
the case in which the photons are frequency-degenerate and with the 
same polarization. The biphoton states can be thus decomposed in 
transverse spatial degrees of freedom (or, equivalently, in the transverse 
momentum) as

||ψη⟩ =∬d 2Xi d 2Xs ψη(Xi,Xs) |Xi⟩ ⊗ |Xs⟩ , (1)

where η = r, u; ψη is a complex function of the transverse coordinates 
of idler and signal photons (Xi, Xs) at a given plane. The superposition 
state is

|ΨTOT⟩ =∬ d 2Xi d 2Xs

[ψr(Xi,Xs) + ψu(Xi,Xs)] |Xi⟩ ⊗ |Xs⟩ .

If ψr is known, one can retrieve information about the phase of ψu 
by coincidence measurements in the transverse position basis.  

ghost imaging experiments19 or quantum super-resolution20,21, as well 
as for fundamental applications, including characterizing two-photon 
correlations13,22, imaging of high-dimensional Hong–Ou–Mandel 
interference23–25, and visualization of the violation of Bell inequali-
ties26. Holography techniques have been recently proposed in the 
context of quantum imaging27–29; demonstrating the phase-shifting 
digital holography in a coincidence imaging regime using polari-
zation entanglement27, and exploiting induced coherence, that is, 
the reconstruction of phase objects through digital holography of 
undetected photons28.

In this work, we focus on the specific problem of reconstructing 
the quantum state (in the transverse coordinate basis) of two photons 
emerging from degenerate spontaneous parametric down-conversion 
(SPDC). These states are characterized by strong correlations in the 
transverse position (considered on the plane where the two-photon 
generation happens), which can be observed in other kinds of pho-
ton sources such as cold atoms30. In these sources, the two-photon 
wavefunction strongly depends on the shape of the pump laser used 
to induce the down-conversion process31. The most commonly used 
approach in the literature to reconstruct the biphoton state emitted 
by a nonlinear crystal is based on projective techniques32–34. This 
method has drawbacks concerning measurement times (as it needs 
successive measurements on non-orthogonal bases) and the signal 
loss due to diffraction. We proposed an imaging-based procedure 
capable of overcoming both of the issues mentioned above, while 
giving the full-state reconstruction of the unknown state. The core 
idea lies in assuming the SPDC state induced by a plane wave as known, 
and in superimposing this state with the unknown biphoton state. 
Unless the superposition is achieved directly on the crystal plane, 
a full analysis of the four-dimensional distribution of coincidences 
is necessary to retrieve the interference between the two wavefunc-
tions. This information can be visualized by observing coincidence 
images, defined as marginals of the coincidence distribution obtained 
integrating over the coordinates of one of the two photons. In fact, 
obtaining coincidence images after post-selecting specific spatial 
correlations allows retrieval of the phase information, likewise in 
cases in which the state does not exhibit sharp spatial correlations. 
We demonstrate this technique for pump beams in different spatial 
modes, including Laguerre–Gaussian (LG) and Hermite–Gaussian  
(HG) modes. We investigate several physical effects from the 
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Fig. 1 | Biphoton state holographic reconstruction. Pictorial representations 
of equation (2) (in the simplified scenario of a two-dimensional space (Xi, Xs)) for 
different scenarios in which the biphoton wavefunctions have variable spatial 
correlations. To mimic typical SPDC states, we modelled the reference biphoton 
as a product exp(−α(Xi − Xs)

2) exp(−(Xi + Xs)
2/σ2 + ik(Xi + Xs)) and the 

unknown wavefunction as exp(−α(Xi − Xs)
2) exp(−(Xi + Xs)

2/σ2) 
h2((Xi + Xs)/σ2), where hn(x) are Hermite polynomials. The parameter α 
quantifies the narrowness of the diagonal correlations. Alongside the three-

dimensional plot of 𝒞𝒞(Xi,Xs), we show the marginal correlation ∫𝒞𝒞(Xi,Xs)dXi 
(which corresponds to the coincidence image obtained when no spatial 
post-selection is performed) and the section 𝒞𝒞(Xi,Xi), which can be obtained 
post-selecting on diagonal correlations. a–c, We chose σ = 1, σ2 = 0.6, k = 2π/
(0.2σ), and α = 1 (a), α = 100 (b) and α = 400 (c). The correlation width 1/√α  is 
reported in each pane. We see that, in the strong correlation limit (c), interference 
is also retrieved in the marginal distribution.
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The coincidence count rate corresponding to a simultaneous detec-
tion of an idler photon in X1 and a signal photon in X2 is proportional to

𝒞𝒞(X1,X2) ∶= |⟨X1,X2|ΨTOT⟩|
2

= |ψr(X1,X2) + ψu(X1,X2)|
2

= |ψr(X1,X2)|
2 + |ψu(X1,X2)|

2

+ [ψ∗
r (X1,X2)ψu(X1,X2) + c.c].

(2)

The last equality displays an interference term containing the 
phase difference between the reference and the unknown biphoton 
wavefunctions.

We note that equation (2) represents an interference pattern in 
the four-dimensional space (X1, X2). Figure 1a gives a pictorial repre-
sentation of equation (2) (here considering only one coordinate per 
photon) for a general case in which the reference and unknown wave-
functions have a large spatial correlation spread. Although registering 
𝒞𝒞(Xi,Xs) is enough to obtain phase information, a further visualiza-
tion of the experimental interference pattern can be obtained by look-
ing at filtered coincidence images. A coincidence image corresponds 
to the marginal distribution ∫𝒞𝒞(Xi,Xs)dXa (a = i or s) where the interfer-
ence term is generically washed out. Interference in coincidence images 
can generally be retrieved by looking at sections of the correlation 
pattern, for example, extracting coincidence images from the quantity 
𝒞𝒞(Xi,Xs)δ(Xs ± Xi) , where the δ function represents a narrow filter 
applied on the four-dimensional correlation pattern (Fig. 1 shows the 
case Xs = Xi, given by the red plot). As we will demonstrate in the follow-
ing section, this operation can be performed by analysing the measure-
ments of a time-stamping camera. As shown below for the case of SPDC 
filtered coincidence images, besides being useful for data visualization, 
can allow to isolate different contributions of the biphoton state.

For the interference pattern to have a good contrast, the ampli-
tudes of ψr and ψu have to be of a similar order. For instance, the 
phase of an unknown state with strong position correlations would 
be well resolved if the reference has the same spread of the spatial 
correlations, whereas the information hidden in the interference 
term would be more difficult to retrieve if using a reference state 
that is spatially uncorrelated or anticorrelated. All of these forms 
of correlations can be observed, in different propagation planes, 
within the state created in type-I SPDC by a pump beam that is 
well approximated by a plane wave shining a thin crystal31. In fact, 
such a state exhibits sharp correlations in the near field (that is, 
the image plane of the crystal) and sharp anticorrelations in the 
far field, while in intermediate propagation planes, one observes 
wider correlation patterns. Thus, one can, in principle, use this as 
a reference state for measuring any arbitrary two-photon state. 
The practical challenge would be then to find the right proto-
col for creating the superposition between the unknown and the  
reference state.

In this work we consider the case in which the unknown state is  
also generated in an SPDC process. In this scenario, if the pump beams 
used for inducing the two SPDC states are in phase, the superposition 
can be generated either by mixing the biphoton superposition on a 
beam splitter (see Supplementary Section 3) or directly inducing the 
two SPDC processes in the same crystal.

The simplest case of the presented scheme arises when both 
the reference and unknown states exhibit sharp position correla-
tions, as is observed in the case of type-I degenerate SPDC from thin 
crystals. Figure 1b,c shows how the transition to a sharp correlation 
regime allows one to observe interference in the marginal distribu-
tion without needing post-selection on the spatial correlations. In 
this widely studied limit, which neglects propagation effects in the 
crystal volume, the two photons are created in the same transverse 
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Fig. 2 | Experimental set-up and state reconstruction. a, Sketch of the 
experimental set-up: a 405 nm laser in a Gaussian mode (ℰref) enters a Michelson 
interferometer, where an ultraviolet spatial light modulator (UV-SLM) in one arm 
is used to shape and generate the unknown pump field (ℰp). The interferometer’s 
output is the superposition of the reference and unknown pump field, which is 
then shined on a 0.5-mm-thick type-I BBO crystal. Photon pairs are consequently 
generated and, after being separated through the beam splitter, sent on single 
photon sensor arrays. The experiment was conducted with one camera and the 
figure is just for illustration, a more detailed description and figure of the set-up 
can be found in Supplementary Information. b, By placing the camera in the far 

field of the crystal and pumping with a large Gaussian beam, we can reconstruct 
the phase-matching function A sinc2(αx2 − ζ) by direct imaging. The figure shows 
a scan of the phase-matching function with a nonlinear fit yielding A = 93 ± 2 
counts, α = (9.1 ± 0.2) × 10−6 mm2 and ζ = 0.30 ± 0.02. Error bars are s.d. extracted 
from the Poissonian counting statistics and assuming as mean values the the 
registered counts (reported as data points). c, Experimental correlations in the 
x- and y-coordinates obtained by placing the sensors in the image plane of the 
crystal. d, Example of reconstructed phase and amplitude of a biphoton state 
(represented in inverted HSV colours) when pumping the crystal with a 
superposition of LG modes: LG1,3 + LG1,−3.
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position; this means that the state can be written as (see ref. 31 and 
Supplementary Section 2)

|Ψ⟩ = 𝒩𝒩∫d 2ρℰp(ρ) |ρ⟩ ⊗ |ρ⟩ , (3)

in the transverse coordinates of the crystal’s image plane, where ℰp(ρ) 
is the pump field on the crystal plane (the subscript p stands for pump) 
and 𝒩𝒩  is a normalization factor. The spatial correlation properties 
of biphoton states in this approximation are of strong interest for 
applications in high-dimensional quantum entanglement and quan-
tum imaging32,34–36.

If the thin-crystal approximation holds for both the reference and 
unknown states, equation (2) contains relevant contributions only for 
the case 𝒞𝒞(X1,X1), with X1 = ρ. These diagonal contributions of the 
coincidence count rate are given by

𝒞𝒞(ρ,ρ) = ||ℰp(ρ) + ℰref(ρ)||
2 . (4)

Here, ℰref  is the pump shape used to generate the reference 
SPDC state. Ideally, ℰref  can be a plane wave or, in practice, a Gaussian 
beam with a large waist. By controlling the reference pump beam 
one can map any interferometric technique that is used in classical 
optics for amplitude and phase reconstruction to the two-photon 
case. In this work, we experimentally implemented off-axis digital 
holography, where the reference beam is a Gaussian beam with a 
tilted wavefront. In off-axis digital holography, with ℰref(x, y) =
A exp(−(x2 + y2)/w2

r ) exp(i2π(x + y)/Λ), where A is the amplitude of 
the reference beam, wr the waist and 2π/Λ the magnitude of the 
average transverse wave vector components, one has

||ℰref + ℰp||
2 = |ℰref|

2 + ||ℰp||
2

+2Ae
− r2

w2
r (ℰpe−i2π

(x+y)
Λ + c.c.) ,

where c.c. indicates the complex conjugate. From a spatial Fourier 
transform one can hence isolate the term proportional to ℰp and recon-
struct the amplitude and phase of the unknown field. The proposed 
scheme can be implemented in two measurement steps: first, the cor-
relations in the crystal image plane are measured to confirm the valid-
ity of the thin-crystal approximation, second, the coincidences 
corresponding to equation (4) are evaluated and the biphoton state 
extracted from the resulting interference pattern.

Beyond the thin-crystal approximation, one has to reconstruct 
also the contribution of the phase-matching function, which is in gen-
eral a function of the form ϕ(Xi − Xs). The phase-matching contribution 

can be retrieved either by analysing the far field SPDC intensity distri-
bution or, more rigorously, by post-selecting anti-diagonal correla-
tions, that is, analysing the coincidence image 𝒞𝒞(X, −X).

Experimental set-up and results
Following the theoretical description of the previous section, we 
experimentally implemented a platform in which, through off-axis 
digital holography, the biphoton state, emitted via SPDC by a type-I 
β-barium borate (BBO) crystal, is reconstructed. In this proof of prin-
ciple experiment, we generate the unknown and reference SPDC states 
in the same crystal. A visual scheme of the set-up is reported in Fig. 2a 
(see Methods and Supplementary Section 5 for details). We built a 
Michelson interferometer which allowed the creation of a pump beam 
in the mode ℰp + ℰref, where the reference mode is a wide Gaussian with 
a tilted wavefront ℰref = exp(−r2/w2

r ) exp(i2π(x + y)/Λ), and ℰp is gen-
erated with a spatial light modulator (SLM) placed in one of the arms 
of the interferometer. The mean transverse momentum 2√2π/Λ is cho-
sen to maximize the spatial resolution of the reconstructed field, and 
wr is chosen to be larger than the characteristic waist parameter of ℰp, 
denoted as wp. The interferometer’s output is sent through the BBO 
crystal, and the state of the two photons is recorded using a 
time-stamping camera (Tpx3Cam). The camera comprises a matrix of 
256 × 256 time-stamping pixels of 55 μm size and with ~1 ns 
time-resolution. We collected data in the crystal’s image plane, which 
were used to reconstruct the biphoton state in the thin-crystal approx-
imation. The emitted signal and idler photons were separated by a 
beam splitter and sent into different regions of the camera sensor, 
allowing one to check for coincidences between different pixels. In  
Fig. 2a we represent, for simplicity, the two sensor areas as two inde-
pendent time-stamping cameras. We could verify the correctness of 
the thin-crystal approximation by observing the spatial correlations. 
This is shown by the sharp, ~1-pixel-wide, spatial correlations observed 
in all of the cases under analysis (see Fig. 2c for an example). The data 
was collected in 1 min of exposure for each spatial mode under analy-
sis. In particular, we collected both the interference pattern between 
the two states and a coincidence image of down-converted light 
induced by ℰp only. The former was used to retrieve the phase of the 
state under analysis, whereas the latter already gives the amplitude of 
the biphoton field. By exploiting this reconstruction, we were able to 
fully characterize the biphoton state. An example of the reconstructed 
phase and amplitude of the biphoton state is in Fig. 2d. Moreover, we 
also characterize the amplitude of the phase-matching function. To 
do so, we collect an image of the far field by placing an additional lens 
in front of the Tpx3Cam camera and entering the crystal with a wide 
Gaussian beam. Fitting the collected data with the function sinc2(αx2 − ζ), 
α and ζ being fit parameters, we obtained α = (9.1 ± 0.2) × 10−6 mm2 and 
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Fig. 3 | SPDC state reconstruction at an intermediate plane. a–d, When moving 
the camera 10 cm away from the crystal image plane, the spatial correlations are 
broader (as shown in a, for the case of x-correlations). The image obtained after 
post-selecting only on temporal coincidence (shown in the inset in a) does not 
exhibit any interference as in the crystal image plane. The red and cyan bands 
in a indicate the two-pixel-wide regions selected to analyse coincidence images 
obtained after selecting spatially correlated (b) and anticorrelated (d) photons, 

respectively. The correlation image (b) shows again the interference between 
unknown and reference pump fields, allowing us to reconstruct the unknown 
field with off-axis holography (c). The anti-correlation image in d displays the 
characteristic cone shape of the phase-matching function. This function is not 
identical to the one obtained in Fig. 2b, but can be obtained by propagating the 
amplitude of the latter from the far field to the intermediate plane.
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ζ = 0.30 ± 0.02. From α, we retrieve a value of the crystal length 
Lexp = 4ωpα/c = 0.56 ± 0.01 mm (where c is the speed of light in the 
medium), which is in very good agreement with the nominal value 
Lnom = 0.5 mm. The phase-matching fit is shown in Fig. 2b. This extra 

measurement allows one, in principle, to evaluate corrections to the 
quantum state beyond the thin-crystal approximation. We took a meas-
urement moving the camera away from the image plane of the crystal 
to show that our approach is not necessarily limited to sharply 
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a, The amplitude and phase of the state for different values of the pump OAM ℓp. 
b, The OAM correlations density plots of generated SPDC photons. It can be seen 
how increasing the pump OAM, the sum of the OAM values for the idler and  
signal photons shift in agreement with the conservation law of equation (6).  

c, Reconstructed biphoton fields obtained by pumping the crystal with LG modes 
changing the ℓ and p indexes. d, Shows the correlations in the radial number p. In 
all of the plots, the OAM of signal and idler has been fixed to ℓi = 0, ℓs = ℓp. The 
fidelities are obtained assuming the theoretical state calculated in the thin-
crystal approximation. The error analysis is reported in Methods.
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correlated photon states. In this plane, the transverse spatial correla-
tions are broader, and the two-photon wavefunction takes the form 
ϕ(|Xi − Xs| /2)ℰ((Xi + Xs)/2) (see Supplementary Section 2 for details), 
where ϕ is related to the phase-matching and ℰ corresponds to the 
pump field propagated from the crystal to the measurement plane. As 
discussed in the previous section and illustrated in Fig. 1a, in this sce-
nario, the imaging of the singles or coincidences, without any 
post-selection, does not show any interference (this is illustrated in 
inset of Fig. 3a); however, when we look at the coincidence image after 
selecting diagonal spatial correlations, we obtain the marginal 
∫d 2Xs 𝒞𝒞(Xi,Xs)δ(Xs − Xi) = |ℰ(Xi)|

2|ϕ(0)|2 . In our case, ℰ = ℰp  +ℰref  
and we therefore see the interference between reference and unknown 
pump beam (see Fig. 3b). From this pattern, one can reconstruct the 
pump field contribution to the SPDC state, as shown in Fig. 3c.  
This reconstruction yields only the part of the biphoton state associ-
ated with the pump field; however, the phase-matching can also be 
reconstructed from the same measurement by extracting 
∫𝒞𝒞(Xi,Xs)δ(Xi + Xs)dXs = |ℰ(0)|2|ϕ(Xi)|

2  (see Fig. 3b). We note that  
in our set-up, the phase-matching functions of reference and  
unknown state are identical, so we only have access to the absolute 
value of this contribution. It must be noted, however, that a set-up in 
which the two SPDC states are created from two independent sources 
would also allow access to eventual phase structures in the 
phase-matching term (see Supplementary Section 3). Alternatively, 
one can extract the phase-matching contribution at different planes 
and infer its phase using the Gerchberg–Saxton algorithm37. We will 
investigate this non-interferometric approach in a future work. Once 
the biphoton state is given, one can extract any desired information 
about this state, for example, correlations in different degrees of free-
dom, entanglement and the decomposition in arbitrary sets of  
spatial modes.

Reconstruction of spatial mode correlations
One of the degrees of freedom of light that has been extensively 
studied for high-dimensional quantum applications, is the OAM. 
Modes in OAM eigenstates are represented by wavefunctions pos-
sessing a phase term of the form exp(iℓϕ) in position representation. 
Here, ϕ is the azimuthal angle in cylindrical coordinates, and ℓ ∈ ℤ 
is the OAM value (along the propagation direction) in units of ℏ car-
ried by a photon in such a state. Given a set of OAM-carrying modes 
⟨r,ϕ|p, ℓ⟩ ∶= fp(r) exp(iℓϕ) , where fp(r) denotes an orthonormal set 
of radial functions, the probability of detecting the idler photon with 
OAM ℓi and the signal with OAM ℓs is (for fixed pi and ps)

Ppi ,ps
ℓi ,ℓs

= |||∬ℰp(r,ϕ) f∗pi (r) f
∗
ps (r), e

−i(ℓi+ℓs)ϕrdrdϕ|||
2
. (5)

In particular, when the pump beam carries an OAM equal to ℓp one has 
the OAM conservation law:

ℓp = ℓi + ℓs, (6)

which can be immediately deduced from equation (5)31 and was first 
demonstrated in ref. 32. We investigated this relationship for several 
OAM values by entering the crystal with LG modes38. These are a set of 
modes defined as:

LGp,ℓ(r,ϕ) ∶=⟨r,ϕ|p, ℓ⟩ ∝ (r/w)|ℓ|L|ℓ|p (2r2/w2) exp(−(r/w)2) exp(iℓϕ),

where L|ℓ|p (x) are associated Laguerre polynomials. LG modes are cylin-
drically symmetric modes carrying OAM and with minimal divergence 
in free space39. We analysed the case in which we entered the crystal 
with states having azimuthal index ℓ ∈ {0, 1, 2, 3, 4}, the results are 
reported in Fig. 4. We show the OAM detection probabilities without 
specifying the radial function, calculated as Pℓi ,ℓs = ∑pi ,psP

pi ,ps
ℓi ,ℓs

, where 
we restricted the sums over the radial indexes for pi,s = 0, … , 10. It is 
evident how increasing the OAM carried by the pump causes the OAM 
correlations to shift in agreement with equation (6) (as also observed 
in, for example, ref. 32). It has been observed that the SPDC state in the 
OAM basis violates high-dimensional Bell inequalities33,40. In Fig. 4b, 
we also report the trace distances between the theoretically calculated 
(P th

ℓi ,ℓs
) and reconstructed (Pℓi ,ℓs) probability distributions, defined as 

𝒟𝒟 = ∑ℓi ,ℓs
||Pℓi ,ℓs − Pth

ℓi ,ℓs
|| /2. The values of 𝒟𝒟 increase with a higher ℓp, 

mainly due to imperfections in the pump preparations (hence the pump 
beam is better described as a superposition of OAM states). The distri-
butions Pth

ℓi ,ℓs
 are shown in Supplementary Fig. 4.

The radial index p ∈ ℕ of LG modes corresponds to the number 
of radial zeros and can be treated as a quantum number41,42. In Fig. 4c, 
experimental results of biphoton states for pump beams, prepared as 
LG modes, are shown. The coefficients of the SPDC state decomposition 
in LG modes |Ψ⟩ = ∑ps ,ℓs

pi ,ℓi C
ps ,ℓs
pi ,ℓi

|pi, ℓi⟩ ⊗ |ps, ℓs⟩  were extracted from  
the reconstructed states. Figure 4d shows experimental correlations 
in radial indexes (with OAM indexes of idler and signal fixed as 
ℓi = 0, ℓs = ℓp). When choosing the waist parameter of the decomposition 
to be equal to the pump waist, the correlations are maximized for 
pi,s = pp, ps,i = 0. This can be understood from the similarity between the 
integral expression of Cps ,ℓs

pi ,ℓi
 and the orthogonality relationship of LG 

modes. The fidelity ℱ = |∑ps
pi
C∗ps ,ℓppi ,0

Cthps ,ℓp
pi ,0 |2 was evaluated within the 

considered subspaces (where indices pi,s are bounded from 0 to 10  
and ℓi = 0, ℓs = ℓp), where C∗ps ,ℓppi ,0

 represents the measured coefficients 
and Cthps ,ℓp

pi ,0
 represents those expected from the thin-crystal  

mp = 0, np = 1,     = (96.0 ± 0.3)% mp = 2, np = 0,     = (90.7 ± 0.4)% mp = 1, np = 1,     = (94.1 ± 0.2)% 
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Fig. 5 | Hermite–Gauss correlations. When pumping the crystal with 
ℰp(x, y) = HGm,n(x, y), we observe biphoton correlations in the basis of HG 
modes that highlight the parity conservation of the SPDC process. Insets show 
the reconstructed biphoton fields from which the correlations have been 

extracted. Upon each plot, the fidelity between the retrieved field and the 
theoretical one in the thin-crystal approximation is reported. The error analysis 
is discussed in Methods.
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approximation—both of the coefficients are obtained after normalizing 
the state in the reduced subspace.

In this approximation, the parity of the spatial modes is also con-
served35. This effect can be highlighted by considering pump beams in 
HG modes38 which, on the crystal plane, read

HGmp ,np (x, y) ∶= ⟨x, y|mp,np⟩

∝ exp ( − (x2 + y2) /w2
p)hmp (x/wp)hnp ( y/wp) ,

where hm(x) represents Hermite polynomials of order m. HG modes 
form a complete, orthonormal set with even or odd functions along 
the x- or y-directions; the SPDC state can therefore be decomposed as 
|Ψ⟩ = ∑ms ,ns

mi ,ni K
ms ,ns
mi ,ni |mi,ni⟩ ⊗ |ms,ns⟩ . This basis has been extensively 

studied35,36,43 and recently considered for biphoton super-resolution 
measurements44. When studying the SPDC correlations on the basis 
of HG modes (chosen with the same waist parameter w = wp of the 
pump), one has the conservation laws: np = mod(ni + ns, 2)  and 
mp = mod(mi +ms, 2) , as can be directly inferred from the parity of 
the integrands appearing in the expression of Kms ,ns

mi ,ni  (see Methods and 
ref. 35 for a detailed proof). Figure 5 shows calculated HG mode cor-
relations for different states (with reconstructed biphoton amplitude 
and phase shown in the insets). The results show an excellent agreement 
with theory; in particular, the parity conservation is evident from the 
chessboard-like correlation patterns.

Finally, Fig. 6 demonstrates an example of the potential 
applications of biphoton digital holography. The unknown pump 
beam can carry information about an image or be scattered by a 
three-dimensional object. The information about the scatterer is trans-
ferred to the SPDC state and can be retrieved through our technique 
(Fig. 6b). We show this in the case of off-axis holography, which can 
present limitations for complex structures due to the limited camera 
resolution. These limitations are not related to our proposal and can 
be improved by employing other approaches, for example, on-axis 
phase-shifting digital holography9.

Conclusion
In this work we introduced a novel approach for reconstructing the spa-
tial structure of correlated two photons states. Our proposal exploits 
the coherent superposition of two SPDC states and the possibility of 
imaging the amplitude of this superposition with a time-stamping 
camera. The experimental results showed how, from a single measure-
ment, it is possible to retrieve, in post-processing, a large amount of 
information about a two-photon spatial state, including correlations in 
different degrees of freedom, entanglement and spatial mode decom-
position in arbitrary bases. We focused on the simple case of SPDC 

generated from thin crystals and, for different pump fields, analysed 
OAM and parity conservation, high-dimensional entangled states and 
radial mode correlations. The results show the superiority of this tech-
nique, compared with projective techniques (for example, the ones 
in refs. 34,42,45), in the context of benchmarking highly correlated 
quantum states. We observe that, if a projective measurement was 
performed on a 11 × 11 subspace, in line with the ones considered in 
this work for radial modes, several days would be required to accumu-
late the necessary statistics on 1212 projections due to the low count 
rates associated with the lossy techniques used for mode projection. 
In comparison, our approach allows us to obtain the necessary data in 
a few minutes, independently from the dimensionality of the subspace 
to be analysed (the latter is only limited by the camera resolution). We 
also note that, with the time-stamping camera, when spatial correla-
tions are present, a further background subtraction is possible thus 
improving the signal-to-noise ratio of this kind of measurement. We 
thus achieved a three-order-of-magnitude enhancement on the recon-
struction time with high fidelities for the biphoton states, obtaining 
an average fidelity equal to 87%. The lowest fidelity values are due to 
imperfect pump preparations or an undesired spatially varying phase 
in the reference beam and not to intrinsic limitations of the technique. 
Although most of our results are based on a specific kind of two-photon 
state, we also showed how it is possible to generalize to states where 
the correlations are not sharp. A key ingredient is to generate reference 
states with spatial correlations that overlap well with the correlations 
in the unknown state. Future investigations will be devoted to the gen-
eralization of this approach to arbitrary two and multiphoton states, 
realizing experiments where the reference and unknown states are 
generated from distant sources. Moreover, we point out that the same 
technique presented here can be applied to measure biphoton states in 
the time-frequency degrees of freedom, where several interferometric 
approaches have been demonstrated46–48. Besides the quantum state 
reconstruction, future investigations will be devoted to the generaliza-
tion of our protocol to imaging experiments.
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maries, source data, extended data, supplementary information, 
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Methods
Detailed experimental set-up
A Gaussian beam with a wavelength of 405 nm is produced through 
the second harmonic generation of a 810 nm pulsed Ti:Sa laser  
(Chameleon Vision II), the latter has a pulse duration of 150 fs and 
a repetition rate of 80 MHz. The beam is magnified to ~1 cm beam 
waist and sent in the input of a Michelson interferometer. A reflective 
liquid crystal SLM is placed in one arm of the interferometer. At the 
interferometer output, all of the diffraction orders of the SLM, except 
for the first, are filtered out by a slit placed in the SLM’s Fourier plane. 
The slit allows keeping the reference beam (corresponding to the 
beam going through the interferometer arm without the SLM) with 
a different transverse wavevector, thus allowing to perform off-axis 
digital holography while maintaining good interference stability. The 
phase masks applied on the SLM allows the generation of arbitrary 
optical fields by means of the technique introduced in ref. 49. After 
filtering, both beams (each with the power of the order of 100 mW) 
are collimated and sent on the 0.5-mm-thick type-I BBO crystal for 
SPDC generation. The vertically polarized down-converted light is 
collimated by a lens of focal length f = 25 cm, and split into two cop-
ies, that is signal and idler photons are sent to two separate paths 
(with 50% probability), by a sequence consisting of a half-wave plate 
rotated by 22.5° and a polarizing beam splitter (effectively working as 
an ordinary beam splitter). The two copies are sent on parallel paths 
(by sending them on another polarizing beam splitter and changing 
the polarizations in such a way as to maximize the intensity on one 
output port). The two beams have a lateral shift, that avoids them 
from being overlapped, and are focused, by means of a f = 50 cm lens 
in the thin-crystal approximation configuration and by a f = 75 cm 
lens for the reconstruction of the state in an intermediate plane, on 
the TPX3CAM sensor. In front of the sensor, a 3 nm bandpass filter is 
applied to ensure the frequency degeneracy of the analysed photons. 
The bandpass filter also ensures a sufficient contrast of the interfer-
ence fringes. In the far field configuration, used to reconstruct the 
phase-matching function, an additional f = 20 cm lens is placed in 
front of the camera in a confocal configuration.

Data acquisition and analysis
The data was acquired by collecting SPDC light on the Tpx3Cam for 
1 min for each dataset. We collected data for scenarios in which both the 
reference and pump beams were sent via the BBO crystal, and cases in 
which only the pump beam was sent via the crystal, after blocking the 
reference arm. The acquired data files report the time stamp at which 
the counts were detected (see refs. 17,24,25,50 for more information). 
In our case, as we shine two copies of the SPDC light on different regions 
on the camera, we can have counts from these regions detected in the 
same time window. We considered as coincidences the counts from 
the two regions with a time-stamp difference of 5 ns. We analysed the 
spatial correlations from this set of counts, confirming the validity of 
the thin-crystal approximation. A weak constant background in the 
correlation plot is always present (due to dark counts and background 
light) and can be reduced by removing the counts outside the correla-
tion region. Coincidence images were obtained by plotting the posi-
tions of the counts selected as coincidences.

The resulting coincidence images were analysed using stand-
ard off-axis digital holography9, as described in the main text. The 
decomposition of the reconstructed states in terms of OAM, HG and 
LG modes has been conducted by direct calculations of the expansion 
coefficients in the respective bases. The errors on the fidelities have 
been obtained by repeating the analysis for different state reconstruc-
tions, where the original coincidence images were modified pixel by 
pixel by random amounts within the uncertainty, given by the square 
root of the coincidences assuming Poissonian statistics. In the main 
text, we report the average fidelity and the standard deviation over 
twenty different realizations.

Parity conservation
The coefficients Kms ,ns

mi ,mi
 in the HG expansion of the SPDC state are given 

by the integral

Kms ,ns
mi ,mi

∶= (⟨mi,ni| ⊗ ⟨ms,ns|) |Ψ⟩ =

𝒩𝒩∬ℰ(x, y)e−2(
x

wp
)
2

hmi (
x
wp

) hms (
x
wp

)

×e−2(
y

wp
)
2

hni (
y
wp
)hns (

y
wp
)dxdy.

We consider the case in which ℰ(x, y) = Fx(x) Fy( y)  where Fx and Fy are 
even or odd functions of x and y, respectively (which is the case if the 
pump is in a HG mode). We have Cms ,ns

mi ,mi
= IFx × IFy, where

IFξ ∶= √𝒩𝒩∫
∞

−∞
e−2(

ξ
wp

)
2

Fξ(ξ)hli (
ξ
wp

)hls (
ξ
wp

)dξ

with l = m, n for ξ = x, y, respectively. The product hli (
ξ
wp
)hls (

ξ
wp
)  is  

even/odd if li + ls is even/odd. Thus, the integral is zero if the parity of 
Fξ is different than the parity of li + ls, hence the conservation law men-
tioned in the main text.
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